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Summary. We discuss the problem of approximating a function f of the 
radial distance r in R e on 0 < r < oo by a spline function of degree m with n 
(variable) knots. The spline is to be constructed so as to match the first 2n 
moments off.  We show that if a solution exists, it can be obtained from an 
n-point Gauss-Christoffel quadrature formula relative to an appropriate 
moment  functional or, i f f  is suitably restricted, relative to a measure, both 
depending on f. The moment  functional and the measure may or may not 
be positive definite. Pointwise convergence is discussed as n-,oo.  Examples 
are given including distributions from statistical mechanics. 

Subject Classifications: AMS (MOS): 41A15, 65D32; 33A65; CR: G1.2. 

1. Introduction 

Following earlier work of Laframboise and Stauffer [10] and Calder, Lafram- 
boise and Stauffer [1], one of us in [-8] considered the problem of approximat- 
ing a funct ionf(r )  of the radial distance r=Hx H, 0 < r < o o ,  in R d, d > l ,  by a 
piecewise constant function of r (and also by a linear combination of Dirac 
delta functions). The approximation was to preserve as many moments o f f  as 
possible. It was found that the problem can be solved by means of Gauss- 
Christoffel quadrature. Here we extend this work to spline approximation of 
arbitrary degree. Under suitable assumptions on f it will be shown that the 
problem has a unique solution if and only if certain Gaussian quadrature rules 
exist corresponding to a (possibly nonpositive) moment  functional or weight 
distribution depending o n f  Existence and uniqueness is assured if f is complete- 
ly monotonic on [0, ~).  Pointwise convergence of our approximation process 
depends on a convergence property of the Gauss-Christoffel quadrature rule. A 
number of examples are presented illustrating the quality of approximation. 

* The work of the first author was supported in part by the National Science Foundation under 
grant DCR-8320561 
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2. Moment-Preserving Approximation by Spline Functions 

A spline function of degree m > 0 on the interval 0 < r < ~ ,  vanishing at r = ~ ,  
with n > 1 positive knots  r~, v = 1, 2, ..., n, can be writ ten in the form 

s,(r)= ~ a~(r~-r)+, O<r< ~, (2.1) 

where a~ are real numbers  and the plus sign on the right is the cutoff symbol,  
t+ = t  if t > 0  and t+ = 0  if t < 0 .  Given a function f ( r )  on 0 < r <  ~ ,  we wish to 
determine s,(r) such that  

rJs,(r)dV = ~ rJf(r)dV, j =0,  1 . . . .  ,2n - 1, (2.2) 
0 0 

where dV=[2nd/2/F(d/2)] r a- 1 dr is the volume element of the spherical shell in 
F, ~ if d > l ,  and dV-=dr if d = l .  In other  words, we want  s, to faithfully 
reproduce the first 2n spherical moments  o f f  

A first approach  to this p rob lem can be based on the momen t  functional 

ct3 . 

( j+d+m)!  !r j+n_l f (r)dr ,  j = 0 ,  1,2, 
s =# j ,  P i - m ! ( j + d _ l ) !  . . . .  

(2.3) 

The functional s by  virtue of  (2.3), and being linear, is well defined for any 
polynomial ,  and therefore gives rise to the concept  of or thogonal i ty  with 
respect to the functional 5v: Two polynomials  p and q are or thogonal  with 
respect to s if s  q) = 0  (cf. [2, Chapter  1, Sect. 2]). 

oo 

Theorem 2.1. Given f with ~ r j + a- i f(r)  dr, j =0,  1 . . . . .  2n - 1, finite, there exists a 
0 

unique spline function s, of the form (2.1) with distinct positive knots rv and 
satisfying (2.2) if and only if there exists a unique (monic) polynomial ~ , ( . ;  2,o) of 
degree n orthogonal with respect to ~ to all lower-degree polynomials and 
having zeros r~ "), v = 1, 2, ..., n, that are all simple and positive. In that event, the 
knots rv and weights a~ in (2.1) are given by 

r~ =r~"), av=r~-(m+d)w~, v = l , 2 , . . . , n ,  (2.4) 

where {w~} is the (unique) solution of the Vandermonde system 

~ w ~ r { = # j ,  j = 0 ,  1 . . . . .  n -  1. (2.5) 
V = I  

Proof Substituting (2.1) in (2.2) yields, since r v >0 ,  

r v  

a~rJ+a-a(rv - r )"dr=~r~+a- l f ( r )dr ,  ] =0,  1, . . . , 2 n - 1 .  
v = l  0 0 

(2.6) 
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Introducing on the left the new variable of integration t through r =tr~ gives 

j + d + m  j + d - 1  a~r~ ~t (1 - t )mdt=~rJ+a-Xf ( r )dr .  
v = l  0 0 

The integral on the left is the well-known beta integral which can be expressed 
in terms of factorials. There results 

where 

J-- j=0 ,  1 . . . . .  2n-- 1, (2.7) w~rv--lij, 
V = I  

d+m (2.8) % = a~r; , v=l ,2 , . . . , n ,  

and #j is given by (2.3). By virtue of the first relation in (2.3), the system of 
nonlinear equations (2.7) can be written in the form 

~ w~p(r~) = ~ p ,  all p~IP2,_ 1, (2.9) 
v ~ l  

which identifies r~ and w v as the nodes and weights of the "Gaussian quadrature 
formula" for the functional 5r It is well known (see, e.g., [6, w 1.3]) that (2.9) is 
equivalent to the following two conditions: 

(i) The formula (2.9) is interpolatory, i.e., valid for every p e l P  1; 

(ii) The node polynomial co(r)= lZI (r-r~) is orthogonal with respect to 2~o 
V=I 

to all polynomials of degree < n. 
The second condition identifies co as co( . )=~,( .  ; ~ )  and the knots r~ as the 

zeros of re,(. ; LP). The first condition is equivalent to (2.5). [] 

It is well known that ~,(" ; ~ )  exists uniquely if and only if 

[ ~ 0  ~1  "'" #n ] 
d e t  . . . . . .  (2.10) 

k]gn # n + l  "'" ]g2n _l 

While Theorem 2.1 is of some theoretical interest, it does not lend itself to 
constructive purposes because of the well-known ill-conditioning associated 
with power moments. 

By further restricting the class of functions f, it is possible, however, to 
relate our problem to Gauss-Christoffel quadrature relative to an absolutely 
continuous measure supported on [0, oo] (and depending of f) .  Therefore, 
recently developed stable methods of constructing orthogonal polynomials (see, 
e.g., I-7]) can be brought to bear upon the problem. 

Theorem 2.2. Let  f be such that the integrals ~ r j+d- i f (r )  dr, j =0, 1, ..., 2 n -  1, 
converge and, in addition, that o 

feCm+ 1 [0, oo], l imr2"-l+a+"ft")(r)=O, # = 0 , 1  . . . . .  m. (2.11) 
r~oo 
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Then a spline function s. of the form (2.1) with positive knots r~, that satisfies 
(2.2), exists and is unique if and only if the measure 

( - 1 ) " + 1  rm+~ft"+l)(r)dr on [ 0 , ~ )  (2.12) d2(r) - m! 

admits an n-point Gauss-Christoffel quadrature formula 

I p(r)d2(r) = 2~) p(r~")), PelPz,-  1, (2.13) 
0 v = l  

with distinct positive nodes r~ "). In that event, the knots r v and weights av in (2.1) 
are given by 

__~-~m+d)~t,) V =1,  2, n. (2.14) rv=r~ "), a~--,~ .~ , ..., 

Remark. The case m = 0  of Theorem 2.2 has been obtained in [8]. 

Proof of Theorem 2.2. The  left-hand side in (2.6), through m integrations by 
parts,  can be seen to be equal to 

m ! [ ( j + d ) ( j + d + l ) . . . ( j + d + m - 1 ) ]  -1 a [ r J+d+" - I  dr v J  
v = l  0 

=m![tj+d)(/+d+ 1)-..0'+d+m)] -1 ~ avr~ +~§ (2.15) 
v = l  

The integral on the right of  (2.6) is t ransformed similarly by m + 1 integrations 
by parts. We carry out the first of  these in detail to exhibit the reasonings 
involved. We have, for any b > 0, 

b b 

~ri+a-l f ( r )dr=( j+d) - t rJ+af ( r ) lbo- ( j+d)  -1 frJ+~f'(r)dr. 
0 0 

The integrated te rm clearly vanishes at r - 0  and tends to zero as r = b ~ o o  by 
the second assumpt ion  in (2.11) with # = 0 .  Since j<=2n-1 and the integral on 
the left converges by assumption,  we conclude the convergence of the integral 
on the right as b ~  oo. Therefore, 

r j + a -  i f ( r )  dr = - ( j  + d ) - i  ~ r3+af,(r) dr. 
0 0 

Continuing in this manner ,  using the second assumpt ion  in (2.11) to show 
convergence to zero of the integrated te rm at the upper  limit (its value at r = 0  

always being zero) and the existence of ~ r j+a- l+uf(U)(r)dr already established 
0 

to infer the existence of ~ ri+a+uf (u+ l~(r)dr, # = 1, 2 . . . .  , m, we arrive at 
0 

oo 

# + a -  Xf(r) dr = ( - 1) "+1 [(j + d)(j + d + 1)..-(j  + d + m ) ] - I  ~ ri+a+"f~,.+ 1)(r ) dr. 
0 0 

(2.16) 
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Comparing (2.16) with (2.15), we see that Eqs. (2.6), and hence Eqs. (2.2), are 
equivalent to 

(av~+a)r~= S r ( - 1 )  -+1 ~=1 o [ mi r"+af(m+l~(r) rJdr, j = 0 ,  1 .... , 2 n - 1 .  

These are precisely the conditions for r~ to be the nodes of the Gauss- 
Christoffel formula (2.12), (2.13) and a~ r~ +a their weights. 

The nodes r~ "), being the zeros of the orthogonal polynomial re,(" ; d2) (if it 
exists), are uniquely determined, hence also the weights 2~ "). [] 

I f f i s  completely monotonic on [0, oo) (see, e.g., Widder [-12, p. 145 if.I) then 
d2(r) in (2.12) is a positive measure for every m. Moreover, the first 2n 
moments exist by virtue of the assumptions made on f in Theorem 2.2. The 
Gauss-Christoffel quadrature rule (2.13) therefore exists uniquely, all nodes r~ ") 
being distinct and positive and all weights 2~ "~ positive. The latter implies 
av>0, v =1, 2 ....  , n, in (2.1). 

Theorem 2.3. Given f as in Theorem 2.2, assume that the measure d2 in (2.12) 
admits an n-point Gauss-Christoffel quadrature formula (2.13) with distinct 
positive nodes rv=r~ "). Define 

a,(t) =t-~m+a)(t-r)+ . (2.17) 

Then, for any r > O, we have for the error of the approximation (2.1), (2.2), 

f ( r ) - s , ( r )  = R,(a, ; d2), (2.18) 

where R,(g; d2) is the remainder term in the Gauss-Christoffel quadrature formula 
(2.12), (2.13), 

o0 r l  

j" g(t)d2(t) = Z 2~ ) g(r~ (")) +R,(g;  d2). (2.19) 
0 v = l  

Proof. By Taylor's formula, one has for any b > 0, 

r 

�9 f( ' )(b),  _b)m +_~.. !(r - t ) " f  {"+ l'(t) dt. (2.20) f(r) =f (b )  + f'(b)(r -b )  +... - t - ~ [ r  

Since by (2.11), lim tuf(u)(t)=O for #=0 ,  1 . . . . .  m, we obtain from (2.20), letting 
b"-'~ o(3, t~oo 

f(r) ( -1 ) "+1~176  m! ~(t-r)mf("+l)(t)dt ( -  1)"+ ' - mi  ~(t-r)'~f(~+')(t)dt' 
r 0 

hence, by (2.12) and (2.17), 
oo 

f (r) = ~ a,(t) d2(t). (2.21) 
o 

On the other hand, by (2.1) and (2.14), 
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s,(r)= ~ 2~r~-"+a)(r~-r)+ = ~ 2va,(rv). (2.22) 
v = l  v = l  

Subtracting (2.22) from (2.21) yields (2.18). [] 

To discuss convergence as n ~  (for fixed m), we assume f to satisfy the 
assumptions of Theorem 2.2 for all n=1,2, 3 . . . . .  Then, by Theorem 2.3, our 
approximation process converges pointwise (at r), as n--* ~ ,  if and only if the 
Gauss-Christoffel quadrature formula (2.19) converges when applied to the 
special function g(t)=a,(t) in (2.17). Since a~ is uniformly bounded on ~,., this is 
true, for example, if d2 is a positive measure and the moment problem for d2 
on [ - ~ ,  ~ ]  (with d2(t)=O for t<0)  is determined (cf. [4, Chapter 3, Theo- 
rem 1.1]). 

3. Examples 

We begin with, perhaps, the simplest example - the exponential distribution 
in •d. All computations reported in this section were done on the CDC 6500 
computer in single precision (machine precision ~3.55 x 10-15), except for 
Table 2, which was computed in double precision. 

Example 3.1. f(r) = c d e-" on [0, ~),  where c 1 = 1, c d =F(d/2)/(2F(d) nd/2) if d > 1. 

For this distribution the measure (2.12) becomes the generalized Laguerre 
measure 

d2(r) cd m! r"+ae-rdr' 0 < r <  oo. (3.1) 

The knots r~, therefore, are the zeros of the generalized Laguerre polynomial 
L~ ) with parameter ~=m+d, and the weights a~ follow readily from (2.14) in 
terms of the corresponding Christoffel numbers 2~ "). It is a straightforward 
matter to calculate the desired spline (2.1) for any value of m, d and n. 

Table 1 shows approximate values of the resulting maximum absolute 
errors max [s,(r)-f(r)l, for r e= l ,  2, 3; d =1, 2, 3; and n=5,  10, 20, 40. (Num- 

O<--r<--rn 

bers in parentheses indicate decimal exponents.) Clearly, [s ,(r)-f(r) l  = f ( r )  for 
r>r,. Since the moment problem for the measure d2 in (3.1) is determined (see, 
e.g., [-4, Chapter 2, Theorem 5.2]), it follows from the remark at the end of Sect. 2 
that s,(r)--+f(r) as n~oo,  for any fixed r>0 .  

It is likely that convergence also takes place if n is fixed and m~oc .  When 
n = 1, for example, 

(m+ l)...(m+d) ( r )" 
sl(r) =Cd ~ - d ~ i ~  1 - m+-d+ 1 +' (3.2) 

which implies sl(r)=cne-r+O(m -1) as m~oo.  For other values of n, and 
selected values of r (with d = 1), the convergence behavior as m--+ oo is illustrat- 
ed in Table 2, which shows the respective absolute errors. 

Our next example is the Bose-Einstein distribution; for simplicity we do 
not normalize it to have unit integral over space. 

Example 3.2. f(r) =(ae '  - 1)- 2, a > 1 if d = 1 and ~ > 1 if d > 2. 
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Table 1. Accuracy of the spline approximation for Example 3.1 
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n d = l  

m = l  

d = 2  d =3 

m = 2  m = 3  m = l  m = 2  m = 3  m = l  m = 2  m = 3  

5 5.9 (-2) 1.8 (-2) 7.9 (-3) 2.4 (-2) 1.1 (-2) 5.9 (-3) 1.2 (-2) 6.5 (-3) 3.9 (-3) 
10 1.8 (-2) 3.5 (-3) 1.0 (-3) 8.9 (-3) 2.7 (-3) 9.4 (-4) 5.0 (-3) 1.9 (-3) 7.6 (-4) 
20 1.5 (-2) 1.2 (-3) 1.9 (-4) 2.8 (-3) 4.9 (-4) 1.0 (-4) 1.7 (-3) 3.9 (-4) 9.8 (-5) 
40 7�9 (-3) 4.2 (-4) 4.7 (-5) 1.2 (-3) 7.6 (-5) 8.8 (-6) 5.1 (-4) 6.5 (-5) 92  (-6) 

Table 2. Convergence behavior as m--*~ of the spline approximation for Example 3.1 

m r = 5  

/'/--5 

r = l . 0  r=5 .0  

n = 1 0  n = 2 0  n = 5  n = 1 0  n = 2 0  n = 5  n = 1 0  n = 2 0  

5 7.3(-4) 3.2 (-5) 3.3 (-7) 5.1(-4) 1.6 (-5) 3.5 (-6) 1.2 (-4) 2.5 (-5) 1.3 (-6) 
10 6.7(-5) 6.3 (-7) 7.3(-10) 4.4(-5) 2.1 (-7) 3.3 (-9) 8.3 (-7) 1.8 (-8) 1.3 (-9) 
20 4.0(-6) 4.6 (-9) 2.4(-13) 2.6(-6) 1�9 (-9) 6.3(-13) 2.1 (-7) 7.0(-10) 4.6(-13) 
40 1.8(-7) 1.5(-11) 1.1(-17) 1.2(-7) 4.9(-12) 2.2(-17) 9.9 (-9) 1.8(-12) 6.1(-18) 
80 7.0 (-9) 3.0 (-14) 1.0 (-22) 4.6 (-9) 9.5 (-15) 1.8 (-22) 3.7 (-10) 2.8 (-15) 2.8 (-23) 

where 

It  can be shown by induction that  

m +l  
r k f(m+a)(r)=(--1)m+lf(r) ~ q , ,+ l , k [ f (  ) ] ,  

k=0 

q l . o : q l . l  : 1 ,  

qu+ 1.o : q u ,  o, 

qu+ 1,~ =~qu,~- 1 + ( K +  1) q . ,~ ,  

qu+ 1.u+ 1 =(# + 1) q. ,  

T h e  m e a s u r e  (2.12) t h u s  b e c o m e s  

~:=l,...,#} p=l,...,m. 

m + d  m + l  

d2(r)=~f(r)  ~ q,.+l,k[f(r)]kdr, 0 < r < ~ ,  
�9 k = O  

(3.3) 

and is clearly positive. All moment s  of d2 exist, if a >  1, for arbi t rary m > 0  and 
d >  1. The same is true for ct = 1, if d > 2, since d2 ( r )~ (m + 1)r a-2 [r/(e r- 1)] "+2 
as r ~ 0 .  In these cases, the momen t  problem for d2 is determined,  since 
d2(r)~(ctm!)-lr"+ae-'dr as r ~  (cf. [4, Chapter  2, Theorem 5.2]), and 
therefore s,(r)~f(r) as n ~ ~ .  

The function f ( r ) ,  however,  is unbounded  near  the origin, when a = 1, which 
renders approx imat ion  by low-degree splines difficult. In the range where f is 
significant, and not too close to r =0,  the accuracy at ta inable is typically about  
1-10 percent. 
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Table 3. Relative accuracy of the spline approximation for Example 3.2 

n m = l  m=2 m=3 

v ~ rel. err. v ~ rel. err. v ~ rel. err. 

10 

20 

40 

1 1.272 1 1.468 1 1.646 
2 3.771 5.5 (-1) 2 4.333 2.7 (-1) 2 4.885 1.4 (-1) 
3 7.152 7.5 (-1) 3 7.992 4.8 (-1) 3 8.821 2.9 (-1) 

1 0.597 1 0.664 1 0.724 
2 1.910 3.6(-1) 2 2.142 1.7(-1) 2 2.350 6.6(-2) 
3 3.757 3.2(-1) 3 4.199 1.0(-1) 3 4.625 3.9(-2) 
4 6.057 4.3 (-1) 4 6.677 1.6 (-1) 4 7.286 6.4 (-2) 

1 0.271 1 0.293 1 0.313 
2 0.895 3.1 (-1) 2 0.971 1.4 (-1) 2 1.037 5.5 (-2) 
3 1.837 1.7 (-1) 3 2.002 4.1 (-2) 3 2.146 1.4 (-2) 
4 3.049 1.6 (-1) 4 3.328 3.2 (-2) 4 3.584 9.1 (-3) 
5 4.500 1.9 (-1) 5 4.890 4.1 (-2) 5 5.264 1.1 (-2) 
6 6.187 2.4(-1) 6 6.675 5.8(-2) 6 7.151 1.6(-2) 

1 0.123 1 0.131 1 0.137 
2 0.412 2.9 (-1) 2 0.436 1.3 (-1) 2 0.458 5.1 (-2) 
3 0.859 1.3 (-1) 3 0.912 3.2 (-2) 3 0.958 9.6 (-3) 
4 1.458 8.8 (-2) 4 1.551 1.2 (-2) 4 1.631 4.4 (-3) 
5 2.197 7.3 (-2) 5 2.343 1.0 (-2) 5 2.469 2.7 (-3) 
6 3.065 8.0 (-2) 6 3.271 1.0 (-2) 6 3.456 2.2 (-3) 
7 4.055 9.3 (-2) 7 4.321 1.2 (-2) 7 4.569 2.3 (-3) 
8 5.164 1.1 (-1) 8 5.487 1.6(-2) 8 5.796 3.0(-3) 
9 6.393 1.3 (-1) 9 6.770 2.0(-2) 9 7.134 4.1 (-3) 

M a x i m u m  re la t ive  e r rors  in s o m e  of  the ear ly  in te rva ls  I-rv, rv+l ] ,  
v =  1 ,2 ,3  . . . . .  a re  s h o w n  in T a b l e  3 for c t = l ,  d = 3 ,  1 < m < 3 ,  and  n = 5 ,  10, 20, 40. 
T h e  Gauss -Chr i s to f fe l  q u a d r a t u r e  f o r m u l a  for the  m e a s u r e  (3.3) was o b t a i n e d  
by first c o m p u t i n g  the  r e c u r s i o n  coeff icients  of  the  respec t ive  o r t h o g o n a l  poly-  
n o m i a l s  by  a d i sc re t i zed  Stiel t jes p rocedure ,  s imi lar ly  as in [-8, E x a m p l e  3.2], 
and  then  us ing  w e l l - k n o w n  m e t h o d s  to  c o m p u t e  the Gauss -Chr i s to f f e l  f o r m u l a  

in t e rms  of  the  e igensys tem of  the  assoc ia ted  J a c o b i  m a t r i x ;  see, e.g., [5, 9]. 
O u r  last  e x a m p l e  deals  w i th  the  M a x w e l l  ve loc i ty  d i s t r i bu t ion  t r ea ted  

p rev ious ly  in [8]  for m = 0. 

Example 3.3. f (r) =re -d/2 e -'2 on  [0, ~ ] .  

T h e  m e a s u r e  (2.12) he re  b e c o m e s  

~-d/2 
r 2 d2(r )=--~ ,  rm+dHm+l(r)e - dr, 0 < r < ~ ,  (3.4) 

where  Hm+ 1 is the  H e r m i t e  p o l y n o m i a l  o f  degree  m +  1. If  m > 0 ,  as we  assume,  
Hm+ 1 changes  s ign at least  o n c e  on  (0, m),  so tha t  d2 is no longer  a pos i t ive  
measure .  T h e  exis tence  o f  the  Gauss -Chr i s to f f e l  q u a d r a t u r e  f o r m u l a  (2.13) is 

the re fore  in doubt ,  a n d  even if it exits, we c a n n o t  be  sure  tha t  its nodes  are  all  
s imple  a n d  pos i t ive  as in the  p rev ious  examples .  T h e  m a t t e r  d e p e n d s  on  



Spline Approximations to Spherically Symmetric Distributions 119 

whether the nth degree orthogonal polynomial ~z(.; d2) relative to d2 exists, 
and in addition whether its zeros - the nodes r~ ") in (2.13) - are distinct and 
positive. If so, the solution of our approximation problem is given by (2.14), 
where the 2~ ") are uniquely determined by the nodes -(")" if not, the problem "v , 

has no solution. 
To resolve these issues computationally, we try to generate the recurrence 

relation (i.e., the coefficients ak, ilk) for the (monic) orthogonal polynomials 
~k( ')=~k(' ;  d2), 

7rk+a(r)=(r--otk)rCk(r)--~kgk_t(r), k=0,  1, ..., n - l ,  

l r  l (r)=0,  7r0(r)=l, (3.5) 

by a discretized Stieltjes procedure; cf. [-7, Example 4.6]. If the procedure does 
not break down, that is, /3k4:0 for k=0 ,1  . . . . .  n - l ,  then ~ r , ( ' ; d 2 )  exists 
uniquely. Its zeros r~ ") are the eigenvalues of the (nonsymmetric) Jacobi matrix 

~ 1  0~1 1 

Jn( d~-)= f12 0~2 

0 ~ , , i ~ , _  

(3.6) 

Since some of the /~'s are expected to be negative, we are not attempting to 
symmetrize the matrix J,, as is customary, and possible, in the classical case of 
positive measures. From (3.5) it follows easily that the columns of the matrix 

P, (d2)= [~_1 (r~"); d)-)]~,, = 1 (3.7) 

are the eigenvectors of J,(d2), normalized to have the first component equal to 
1. Putting in turn p(r)=~_l(r;d2), # = 1 , 2  .. . .  , n, in (2.13), and observing that 
oo o0 

~_ l(r)d2(r)=#o 6,,1, where #o = ~ d2(r) and 6,, 1 is the Kronecker delta, one 
0 0 

obtains for the vector f f = [ 2 ]  "),2C2 ") . . . .  ,2~ )] the system of linear algebraic 
equations 

Pn(d,~) J, = ,U o el, e~ = [1, 0 . . . .  ,0]. (3.8) 

We have carried out the computation for the cases r e= l , 2 ,  3; d = 1 , 2 , 3 ;  
and n=1(1)20. All coefficients /~k were found to be different from zero, but 
quite a few of them negative; see Table 4. Interestingly, the negative /~'s seem 
to occur in pairs of two. 

With the ~'s and fl's at hand, we used the EISPACK routine HQR2 [11, p. 
248] to compute the eigenvalues and eigenvectors of J,(d2) and, if all eigenval- 
ues are positive, the LINPACK routines SGECO, SGESL [3, Chapter 1] to 
solve the system (3.8). A summary of the results is presented in Table 5. A dash 
indicates the presence of a negative eigenvalue and an asterisk the presence of 
a pair of conjugate complex eigenvalues. In all cases computed, there were 
never more than one negative eigenvalue or more than one pair of complex 
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Table 4. The sign of the coefficients flk in (3.5) for Example 3.3 

d m ~k<0  for k =  

1 1 2-3, 6-7, 10-11, 15-16 
2 1-2, 4-5, 7-8, 11-12, 14-15, 18-19 
3 1-2, 4-5, 9-10, 16-17 

2 1 3-4, 7-8, 12-13, 17-18 
2 2-3, 5-6, 8-9, 12-13, 15-16, 19 
3 1-2, 4-5, 10-11, 16-17 

3 1 4-5, 8-9, 13-14, 18-19 
2 2-3, 6-7, 9-10, 13-14, 17-18 
3 2-3, 5-6, 10-11, 17-18 

Table 5. Existence and accuracy of the spline approximat ion for Example 3.3 

n d = l  

m = l  

d = 2  d = 3  

m = 2  m = 3  m = l  m = 2  m = 3  m = l  m = 2  m = 3  

1 3.9 (-2) 1.0 (-1) 1.4 (-1) 3.8 (-2) 7.1 (-2) 1.3 (-1) 4.4 (-2) 2.8 (-2) 8.2 (-2) 
2 4.6 (-2) - 1.3 (-1) 3.5 (-2) 8.2 (-2) - 1.4 (-2) 5.7 (-2) 8.8 (-2) 
3 - 6.2 (-3) 1.4 (-3) 3.8 (-2) 1.3 (-1) 5.9 (-3) 2.5 (-2) - 4.0 (-2) 
4 2.1 (-2) 3.8 (-3) 1.2 (-3) - 4.5 (-3) 9.6 (-4) 2.5 (-2) 8.3 (-3) 1.4 (-3) 
5 1.5 (-2) - 8.8 (-4) 8.9 (-3) 5.9 (-3) - - 5.9 (-3) 1.8 (-3) 
6 1.4 (-2) 1.8 (-3) * 6.4 (-3) - 8.6 (-4) 7.3 (-3) 6.0 (-3) 3.2 (-3) 
7 - 1.3 (-3) * 6.9 (-3) 7.2 (-4) 6.8 (-4) 5.3 (-3) 4.9 (-2) 6.5 (-4) 
8 9.1 (-3) - 2.0 (-4) - 8.1 (-4) * 6.1 (-3) 7.7 (-4) 5.7 (-4) 
9 7.2 (-3) 9.5 (-4) 1.5 (-4) 3.9 (-2) - 8.1 (-5) - 1.0 (-3) * 

10 6.8 (-3) 6.4 (-4) - 3.7 (-3) 4.2 (-4) 1.4 (-4) - - 2.3 (-1) 
11 - 6.3(-4) 6.4(-5) 3.4(-3) 2.9(-4) * 1.9(-3) 1.9(-4) - 
12 - - * 3.4 (-3) 2.9 (-4) 5.0 (-5) 2.0 (-3) 2.3 (-4) * 
13 5.4 (-3) 3.8 (-4) * - - 4.3 (-5) 2.1 (-3) 2.3 (-4) 5.9 (-5) 
14 4.8 (-3) 3.5 (-4) 4.9 (-5) 2.8 (-3) 1.9 (-4) * - - 5.0 (-5) 
15 4.8 (-3) - 4.5 (-5) 2.5 (-3) 1.7 (-4) 2.5 (-5) - 9.4 (-5) * 
16 - 3.0 (-4) 4.5 (-5) 2.3 (-3) - 2.5 (-5) 1.3 (-3) 8.2 (-5) - 
17 - 2.2 (-4) 2.4 (-5) 2.3 (-3) - - 1.1 (-3) 8.2 (-5) - 
18 3.6 (-3) 2.2 (-4) * - 1.1 (-4) 1.5 (-5) 1.1 (-3) - * 
19 3.3 (-3) - * 1.9 (-3) 1.1 (-4) 1.2 (-5) - 5.8 (-5) 1.2 (-5) 
20 3.2 (-3) 1.8 (-4) * 1.7 (-3) - * - 5.4 (-5) 8.5 (-6) 

eigenvalues. The numbers shown in Table 5 represent (approximately) the 
maximum absolute errors, max Es.(r)-f(r)l; they are usually (but not always) 

O<_r<=r~ 
attained at one of the early knots r v of the spline. 

Unlike in the previous examples, the weights ~ in (2.1) are no longer 
necessarily positive, the solution of (3.8) having components of either sign, in 
general. 

Acknowledgment. The authors  are indebted to the referee for pointing out  that the approximat ion 
problem (2.1), (2.2) is equivalent to the system of nonlinear equations (2.7). 
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